Detection of uranium using laser-induced breakdown spectroscopy.
نویسندگان
چکیده
The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.
منابع مشابه
The effect of self-absorption correction using internal reference on determining heavy metals concentration by laser induced breakdown spectroscopy
The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities o...
متن کاملDetection and mapping of latent fingerprints by laser-induced breakdown spectroscopy.
Detection of latent fingerprints on a Si wafer by laser-induced breakdown spectroscopy (LIBS) is demonstrated using approximately 120 fs pulses at 400 nm with energies of 84 +/- 7 microJ. The presence of a fingerprint ridge is found by observing the Na emission lines from the transferred skin oil. The presence of the thin layer of transferred oil was also found to be sufficient to suppress the ...
متن کاملComparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry
The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using ...
متن کاملThe detection of palladium particles in proton exchange membrane fuel-cell water by laser-induced breakdown spectroscopy (LIBS).
Laser-induced breakdown spectroscopy (LIBS) using conditional data analysis was applied to aqueous suspensions of palladium particles in the reformate water of palladium-based proton exchange membrane fuel cells. A significant amount of palladium was found in the water, indicating degradation of the fuel-cell cathode catalytic layers. The palladium particle-size detection limit was found to be ...
متن کاملLaser-Induced Breakdown Spectroscopy for Microanalysis
Abstract Laser induced breakdown spectroscopy is a fast non-contact technique for the analysis of the elemental composition of any sample. Our focus is to advance this technique into a new regime where we use pulse energies below 100 μJ. This regime is referred to as microLIBS or μLIBS. Preliminary pulse emission scaling of Na in latent fingerprints has been investigated for ∼ 130 fs, 266 nm pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied spectroscopy
دوره 63 11 شماره
صفحات -
تاریخ انتشار 2009